Nous proposons ici de dιmontrer la formule de calcul de la covariance. On a par dιfinition :
|
|
1 |
n |
|
cov(x,y) |
= |
|
S |
( xi
mx)( yi my ) |
|
|
n |
i = 1 |
|
On dιveloppe les produits :
( xi
mx)( yi my ) |
= |
xi yi xi my
+- mx yi + mx my |
Doω la somme :
|
|
1 |
n |
|
1 |
n |
|
1 |
n |
|
1 |
n |
|
cov(x, y) |
= |
|
S |
xi yi |
|
S |
xi my |
|
S |
mx yi + |
|
S |
mx my |
|
|
n |
i = 1 |
|
n |
i = 1 |
|
n |
i = 1 |
|
n |
i = 1 |
|
On met les termes constants en facteurs. On a alors :
1 |
n |
|
|
|
1 |
n |
|
|
|||||||
|
S |
xi my |
= |
my |
|
S xi |
= |
mx my |
|||||||
n |
i = 1 |
|
|
|
n |
i = 1 |
|
|
|||||||
1 |
n |
|
|
|
1 |
n |
|
|
|||||||
|
S |
mx yi |
= |
mx |
|
S yi |
= |
my mx |
|||||||
n |
i = 1 |
|
|
|
n |
i = 1 |
|
|
|||||||
1 |
n |
|
|
|
1 |
|
|
|
|||||||
|
S |
mx my |
= |
mx my |
|
x n |
= |
mx my |
|||||||
n |
i = 1 |
|
|
|
n |
|
|
|
|||||||
On obtient :
1 |
n |
|
|
1 |
n |
|
|
S |
( xi mx)( yi
my ) |
= |
|
S |
xi yi mx my
mx my + mx my |
n |
i = 1 |
|
|
n |
i = 1 |
|
Doω finalement :
|
|
1 |
n |
|
cov(x,y) |
= |
|
S |
xi yi mx my |
|
|
n |
i = 1 |
|